Skip to main content

LangFlow Integration

Overview

The Voice Feature system integrates seamlessly with LangFlow to provide automated processing workflows for transcribed audio content, enabling sophisticated analysis and transformation of voice data.

Integration Architecture

Connection Types

  • API Integration: Direct REST API communication
  • Webhook Support: Real-time event notifications
  • Batch Processing: Bulk operation handling
  • Stream Processing: Real-time data flows

Data Flow

Voice Upload → Transcription → Automation Rules → LangFlow → Results Storage

Flow Configuration

Flow Requirements

Input Specifications

Flows must accept the following input parameters:

  • transcription_text: Complete audio transcription
  • conversation_id: Id for the audio file created in database (UUID)
  • file_metadata: Audio file information (duration, format, size)
  • processing_context: Upload source and user information
  • custom_parameters: Rule-specific configuration data

Output Requirements

Flows should return structured data including:

  • processing_results: Main analysis output
  • metadata: Processing information
  • status: Success/error indicators
  • artifacts: Generated files or data

Flow Types

Text Analysis Flows

  • Sentiment analysis
  • Topic extraction
  • Key phrase identification
  • Content classification
  • Language detection

Content Processing Flows

  • Summary generation
  • Translation services
  • Entity extraction
  • Intent recognition
  • Content enrichment

Business Logic Flows

  • Compliance checking
  • Quality assessment
  • Routing decisions
  • Data validation
  • Custom business rules

Parameter Mapping

Standard Parameters

Transcription Data

{
"transcription_text": "Complete transcribed text",
"confidence_scores": [0.95, 0.87, 0.92],
"timestamps": ["00:00:01", "00:00:05", "00:00:12"],
"language": "en-US"
}

File Metadata

{
"filename": "meeting_recording.mp3",
"duration": 1847,
"format": "mp3",
"size": 15728640,
"upload_date": "2024-01-15T14:30:00Z",
"owner": "user@example.com"
}

Processing Context

{
"origin": "meeting_uploads",
"automation_rule": "meeting_analysis",
"processing_id": "proc_123456",
"execution_time": "2024-01-15T14:35:00Z"
}

Custom Parameters

Define rule-specific parameters in automation configuration:

  • Business logic variables
  • Processing preferences
  • Output format specifications
  • Integration endpoints

Flow Development Guidelines

Best Practices

Input Validation

  • Validate all input parameters
  • Handle missing data gracefully
  • Provide meaningful error messages
  • Log validation failures

Error Handling

  • Implement comprehensive error catching
  • Return structured error responses
  • Provide diagnostic information
  • Support retry mechanisms

Output Formatting

  • Use consistent output structure
  • Include processing metadata
  • Provide status indicators
  • Support multiple output formats

Performance Considerations

Optimization Tips

  • Minimize processing time
  • Use efficient algorithms
  • Implement caching where appropriate
  • Monitor resource usage

Scalability

  • Design for concurrent execution
  • Handle varying input sizes
  • Implement timeout handling
  • Support horizontal scaling

Authentication and Security

API Authentication

  • Token-based authentication
  • Role-based access control
  • Secure credential storage
  • Regular token rotation

Data Security

  • Encryption in transit
  • Secure data handling
  • Privacy compliance
  • Audit trail maintenance

Monitoring and Debugging

Flow Execution Monitoring

  • Real-time execution status
  • Performance metrics
  • Error rate tracking
  • Resource utilization

Debugging Tools

  • Execution logs
  • Parameter inspection
  • Output validation
  • Error stack traces

Performance Analytics

  • Execution time analysis
  • Success rate trends
  • Resource usage patterns
  • Optimization opportunities

Common Integration Patterns

Sequential Processing

Multiple Flows executed in sequence:

  1. Content analysis Flow
  2. Sentiment analysis Flow
  3. Summary generation Flow
  4. Final result compilation

Parallel Processing

Multiple Flows executed simultaneously:

  • Sentiment analysis
  • Topic extraction
  • Entity recognition
  • Results merged after completion

Conditional Processing

Flow selection based on content:

IF content_type == "meeting":
RUN meeting_analysis_flow
ELSE IF content_type == "interview":
RUN interview_analysis_flow
ELSE:
RUN general_analysis_flow

Troubleshooting

Common Issues

Flow Not Found

  • Verify Flow ID in automation rule
  • Check Flow availability
  • Validate access permissions
  • Confirm Flow deployment status

Parameter Errors

  • Review parameter mapping
  • Validate data types
  • Check required parameters
  • Verify parameter formats

Execution Timeouts

  • Review Flow complexity
  • Check resource allocation
  • Optimize Flow performance
  • Adjust timeout settings

Output Format Issues

  • Validate output structure
  • Check data serialization
  • Review format requirements
  • Test with sample data

Diagnostic Steps

  1. Test Flow independently in LangFlow
  2. Verify parameter mapping configuration
  3. Check authentication and permissions
  4. Review execution logs and errors
  5. Validate output format compliance